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Introduction to Fracture Mechanics

Executive Summary

This text is prepared for a series of lectures on fracture mechanics. The main aim
of the lectures is to provide AMRL staff who are involved in aircraft fatigue and
fracture research with a broad picture of the theoretical background to fracture
mechanics via a stress analysis viewpoint.

As an introductory course, the lectures are focused on the essential concepts and
analytical methods of fracture mechanics. A brief review of some important
issues in the theory of elasticity is provided in Chapter 1, while the remaining
chapters deal with the stress analysis approach and the energy approach to
cracked components, local plastic deformation at crack tips, fracture criteria and
fatigue life prediction.
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1. Fundamentals

1.1 Historical Overview

All engineering components and structures contain geometrical discontinuities -
threaded connections, windows in aircraft fuselages, keyways in shafts, teeth of gear
wheels, etc. The size and shape of these features are important since they determine
the strength of the artefact. Conventionally, the strength of components or structures
containing defects is assessed by evaluating the stress concentration caused by the
discontinuity features. However, such a conventional approach would give erroneous
answers if the geometrical discontinuity features have very sharp radii. To illustrate
this point, consider the following four cases:

F1 F2 F3 F4
1111 111111 1titttt tttttt
A B § C § D S

- A

el e s o o i o i e i A R R

J [N N— [N — .
—— " v "

F1 F2 F3 F4

Fig.1.1 Strength of uncracked and cracked plates

The thickness of each plate is the same. The forces required to break the four samples
can be arranged in the following order:

F4 < F3 < F1 < F2
Clearly the sizes of the defects at Fs and F, are crucial to the strength of the structure.

Fracture mechanics is a set of theories describing the behaviour of solids or structures
with geometrical discontinuity at the scale of the structure. The discontinuity features
may be in the form of line discontinuities in two-dimensional media (such as plates,
and shells) and surface discontinuities in three-dimensional media. Fracture mechanics
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has now evolved into a mature discipline of science and engineering and has
dramatically changed our understanding of the behaviour of engineering materials.
One of the important impacts of fracture mechanics is the establishment of a new
design philosophy: damage tolerance design methodology, which has now become the
industry standard in aircraft design.

‘Fracture mechanics’ is the name coined for the study which combines the mechanics
of cracked bodies and mechanical properties. As indicated by its name, fracture
mechanics deals with fracture phenomena and events. The establishment of fracture
mechanics is closely related to some well known diasters in recent history. Several
hundred liberty ships fractured extensively during World War IL. The failures occurred
primarily because of the change from riveted to welded construction and the major
factor was the combination of poor weld properties with stress concentrations, and
poor choice of brittle materials in the construction. Of the roughly 2700 liberty ships
built during World War II, approximately 400 sustained serious fracture, and some
broke completely in two. The Comet accidents in 1954 sparked an extensive
investigation of the causes, leading to significant progress in the understanding of
fracture and fatigue. In July 1962 the Kings Bridge, Melbourne failed as a loaded
vehicle of 45 tonnes crossing one of the spans caused it to collapse suddenly. Four
girders collapsed and the fracture extended completely through the lower flange of the
girder, up the web and in some cases through the upper flange. Remarkably no one
was hurt in the accident.

Fracture mechanics can be divided into linear elastic fracture mechanics (LEFM) and
elasto-plastic fracture mechanics (EPFM). LEFM gives excellent results for brittle-
elastic materials like high-strength steel, glass, ice, concrete, and so on. However, for
ductile materials like low-carbon steel, stainless steel, certain aluminium alloys and
polymers, plasticity will always precede fracture. Nonetheless, when the load is low
enough, linear fracture mechanics continues to provide a good approximation to the
physical reality. The purpose of this lecture is to provide a broad picture of the
theoretical background to fracture mechanics via a stress analysis view point.

1.2 Notches and Stress Concentration

There seems to be confusion among many engineers between notches and cracks. This
is not surprising as the boundary between notch and crack is sometimes blurred,
especially under fatigue conditions.

A notch is defined as geometric discontinuity which has a definite depth and root
radius. Examples are bolt holes, screw threads or oil holes. The effect of a notch on a
tensile stress field is easily visualised by the familiar ‘stress flow” analogy which
illustrates the high “density’ of stress around the root of a notch, Fig.2. This analogy is
very useful in deciding upon an apparently contradictory course of action: removing
or adding material to smooth out the flow of stress, hence making component stronger.
For instance, if we remove the material (width = a) in Fig.1, we can recover the loss of
strength in cases C and D to the same level as in case A.

The stress concentration factor, Kr, which reflects the severity of a notch, is defined as
the dimensionless ratio of the maximum (elastic) stress at the root of a notch, to the
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nominal applied stress. The suffix T derives historically from theoretical elasticity
theory. The stress concentration factor can be evaluated using analytical, numerical
and experimental techniques; for common notch shapes the Kr values can also be
obtained from a wealth of tables and charts. One practical approximation for many
notch shapes is the formula for elliptical notch shapes:

Kr = Jm = 142 \/-é (1.1)
O-nom p

where D and p are the notch depth (or half notch diameter) and the notch root radius,

respectively. The Kr value for a circular hole is equal to 3, hence relatively shallow
notches can cause local notch root stress to rise above the material’s strength even for
modest values of nominal applied stress. Therefore the presence of a notch can be
crucial to the safety of components made of brittle materials. It should be noted that
the local maximum stress at failure for a notched component is not strictly constant but
may vary with the notch depth. For ductile materials, notches are less dangerous, since
the stress gradient ahead of a concentrating feature is steep thus limiting the spread of
plasticity to a small region and avoiding plastic collapse. However, this saving grace
for static loading can become, and probably is, the greatest single cause of failures in
operating plant subjected to repeated loading. This is because fatigue cracks can be
initiated in the plastic zone of a notch and become very sharp stress concentrating
features (better known as cracks) in their own right, able to propagate under the lower
stress level existing within the bulk of the material.

JEEEE

Stress

Fig.1.2 Stress concentration
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1.3 Cracks and Stress Intensity Factor

From equation (1.1) we can see if we reduce the notch root radius, p, to a very small
value, even approaching a mathematical zero (in engineering terms, to the order of the
dimensions of an atom, 10°m), the stress concentration factor Kr tends to approach
infinity; the geometry is reduced to a crack. As a result, the crack tip stress approaches
a theoretical value of infinity, irrespective of notch depth,

Omax = limS(1+2 \/E) ~ 28 lim \/E (1.2)
p->0 p p—0 ,D

Clearly the idea of stress concentration factor breaks down for a crack, since it cannot
distinguish between various crack lengths and applied stress levels.

It is interesting, however, to examine a product,

%cmaX\/rT= %(25 \E) Jip= S\mD (1.3)

which remains finite and contains the information of remote applied load and the size
of the crack. As we will see later, this new parameter is the so called “stress intensity

factor’.

Fig.1.3 Plane stress state

1.4 Plane Stress and Plane Strain

Plane stress: a thin plate loaded with forces parallel to its plane and distributed
symmetrically over the whole thickness. Stress components &,,7,,,7,, are zero and
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there are only three nonzero stress components: 0,0 ,,7,,. The stress and strain

tensors can be written as,

Stress tensor:

Strain tensor:

zZ

where ¢ =——E(0'x+0'y)

and Hooke's law is

Fig.1.4 Plane strain state

(1.4)

(15)

(1.6)
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Plane strain: A long cylindrical or prismatical body subjected to forces that are normal
to its axis and do not vary along the length. There are three non-zero strain
components (&,,&,,7 ), a8 &, =7, =7,, = 0. The stress and strain tensors are,

ax Txy
Stress tensor: z, o, 0
0 0 o,
where o, = V(o +0,)
& Vs O
Strain tensor: Yy €, 0
0 0 0

The above Hooke's law for plane stress condition are also applicable if we make the
following formal changes to it: substitute constants

v by V= —— (1.7)
1-v

EbyE=

— (1.8)

Fig.1.5 Plane stress or plane strain?

There seems to be quite a lot of confusion about plane strain or plane stress. Consider a
plate as shown in Fig.1.5: it is a plane stress problem if the plate is subjected to in-plane
loading and the interest is about the stresses and deformation in the xz plane,
otherwise it should be treated as plane strain for both the xy and zy planes. A rule of
thumb is that if the dimension normal to the plane of interest is much greater than the
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in-plane dimensions, then it is plane strain, otherwise plane stress. Furthermore, the
concept of plane stress or plane strain is mainly for the convenience of 2D
representation of actual 3D structure, hence it is relative. In many cases the
determining factor is whether there exists a high stress/strain gradient near the point
of interest. For example, if the plate shown in Fig.1.5 is subjected to bending in the xy
or zy plane, it should be considered as plane strain state and the effective Young's
modulus should be E /(1-v*). This is because the high strain gradient through the
plate thickness induced due to Poisson’s ratio effect cannot be fully developed.

1.5 Stress Function

From the theory of elasticity it is easy to show that a true solution to a two-
dimensional problem must satisfy (i) equilibrium, (ii) compatibility, (iii) boundary
conditions. The equations of elasticity reduce to two-dimensional forms in three
special cases, as discussed previously:

1. Plane Strain: In this case the displacement component u, is identically equal to
zero, and none of the physical quantities depends on z.

2. Plane Stress: In a state of plane stress parallel to the xy-plane, the stress
components & ,,,0,, and o, all vanish but the components of the displacement

xz?2

vector are not independent of z.

3. Generalised Plane Stress: This is a state of stress in a thin plate —h<z<h when
0 ,, =0 throughout the plate but o,, =0, =0 only on the surfaces z=1h of the

plate.

For 2D problems, the first two requirements can be automatically satisfied by choosing
an Airy stress function, ® (see Timoshenko,1970) such that,

- 7D . _F0 ; A 19)
A yooox? ¥ Pxdy '
where the stress function is bi-harmonic,
) 7o o)
+2 7o _ (1.10)

+ =
oxt T oxtoy' oyt

Thus the solution of a two-dimensional problem, when the weight of the body is only
body force, reduces to finding a solution of equation (1.10) that satisfies the boundary
conditions of the problem.

A major development in the field of two-dimensional elasticity has been
Muskhelishvili’s (1953) work on the complex form of the two-dimensional equations.
Before we proceed, however, it is necessary to review some fundamental concepts in
complex analytic functions. For an analytic function f{z), where z=x+iy, we have
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210=r@ @ S=1E

from which it is easy to show the Cauchy-Riemann conditions!. Now let us define

o, +0, =2#(2)+§(2)]=4Ref' (2) (1.11a)
o, -0, +2ic, =224"(2) + 1 (2)] (1.11b)
2u, +iu,)=K(z) - 28 (2) - 2(2) (1.110)

where K=3-4v for plane strain and K=(3-v)/(1+v) for plane stress. Here the complex
variable is z=x+iy, referring to a generic point in the xy plane. Note zZ=x—-iy.
Functions ¢ and y are arbitrary complex potentials. The transformation of the
Muskhelishvili formulas using a comformal mapping method from the z-plane to a ¢-
plane (where z=x+iy and {'=&+iy) is of great use in discussing boundary value
problems. For further details please see Ref (Muskhelishvili,1953).

Two special cases of the formulas (1.11) are associated with the name of Westergaard
(1939). If we make the substitutions,

1 1
¢'(2)=52(2) 2'(2) =-522'(2) (1.12)

where function Z, is an analytic function of the complex variable z. It is easy to show
that the following function satisfies equation (1.10), noting the Cauchy-Riemann
conditions for the differentiation of an analytic complex variable,

®=ReZ +ymZ (1.13)

where Z = J.Zdz and Z = jZdz. Now equations (1.11) reduce to

o,=ReZ-yImZ' o, =ReZ+ylmZ' o, =-yReZ (1.14a)
2Gu=2(1-v)ImZ + yReZ (1.15b)
2Gv=—-(1-2v)ReZ - yImZ (1.16¢)

It should be observed that this solution has the property that, on the line y=0,
c,=0 and o, =0, When a conformal mapping is performed, this boundary

OReZ JlmZ olmZ JReZ
1 = = RCZ' = -
2 &y 12 &

=ImZ so V’ReZ=V’ImZ=0
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condition represents a plate with a hole subjected to a hydrostatic pressure, for which
the stress solution is known.

Similarly, if we make the substitutions
4 (z)= —%iZ2 (2) AU E —;—izZ;_ (2)+iZ,(2) (1.17)
we find the corresponding stress field is given by
o_=2ImZ, +yReZ, o,=-yReZ, o,=ReZ, -ylmZ, (L18)
This solution has the property that, on the liney=0, o, =0.

For illustration purposes, let us consider a case of an unstressed elliptic hole in an

~ infinite plate that is subjected to ‘all-round’ tension. The problem can be solved by

using the following simple conformal mapping of the exterior of an ellipse into the
interior of a unit circle, for which the stresses are known,

z=ccoshg (1.19)

where z=x+iy and {=&+iy. That is x=ccoshécosy and y=csinh{siny,
representing a curvilinear coordinate system in which the elliptic boundary is defined
by &=« . Detailed solutions for this problem can be found in Ref.(Timoshenko,1970).




DSTO-GD-0103

10

2. Stress Analysis of Cracked Components

2.1 Energy Balance During Crack Growth

The obvious difference between a cracked body and an uncracked body is the
additional surface associated with a crack. It is a well known fact that creating new
(crack) surfaces consumes energies, because surfaces carry higher energy than the
body. It then follows that whether or not a stressed cracked body remains stable or
becomes unstable is dependent on whether the cracked body contains sufficient
energy to afford to creating additional surface while still maintains equilibrium. This is
the basic concept that Griffith proposed in the 1920's to formulate a linear elastic
theory of crack propagation. To illustrate this point, let us consider an elastic body I
containing an internal crack of length 24, which is subjected to loads applied at the
outer boundary S; see Fig.2.1.

Applied
tractions

Fig.2.1 Equilibrium and energy balance of a cracked system

According to the law of conservation of energy the work performed per unit time by
the applied loads (W) must be equal to the rates of change of the internal elastic
energy (U} ), plastic energy (U , ), kinetic energy (K) of the body, and the energy per

unit time (") spent in increasing the crack area. In other words,
W=U,+U,+K+T @2.1)

where a dot over the letter refers to differentiation with respect to time.



DSTO-GD-0103

If the crack grows slowly the kinematic energy K (or K =0) is negligible and can be
omitted from the energy balance equation. Since all changes with respect to time are
caused by changes in crack size, we have

g_2074_ A_é’_ 2.2)
ot 04 ot o4
where A represents the crack area, and is equal to 24B for the system shown in Fig.2.1.

Here B is the thickness of the plate containing the crack and A denotes the crack
surface area growth rate per unit time. Note that the total crack surface area is twice
the area of one crack surface. Therefore equation (2.1) can be rewritten as

ol du, or
04 JA OA
where
n=U;,-w 2-4)

is the potential energy of the system. Equation (2.3) indicates that the reduction of
potential energy is equal to the energy dissipated in plastic work and surface creation.

2.2 Griffith Theory

For an ideally brittle material, the energy dissipated in plastic deformation is negligible
and can be ignored, i.e. U, = 0. Since the energy spent in increasing the crack area is

independent of the crack size, equation (2.3) can be rewritten as

Z N7 ) 25)
o4 o4 7 '
where y represents the energy required to form unit new material surface area. The
factor 2 in the above equation refers to the two new material surfaces formed during
crack growth. Simply, the above equilibrium equation means that sufficient potential
energy must be available in the system to overcome the surface energy of the material.
In general, for an elastic body containing a crack, we can define a crack-extension

force, G,

oIl

C= %4

(2.6)

per unit width of crack front. Note that 4 = a- B when there is only one crack tip (e.g.
edge cracked component) and 4 =2a-B for centre cracked system. It is important to
note the distinction between crack area and surface area. Since a crack includes two
matching surfaces, the crack surface area is twice that of the projected crack area, and
is equal to 2aB in the present case.

11
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We can also define the total energy of the system, which contains three parts: (1) the
amount of work done by the applied loads, (2) the elastic energy, and (3) the energy
required to form the crack surface. The total energy is

U =(W+Ug)+T (2.7
According to linear elasticity theory, a body under constant applied loads obeys
W = 2Ug (2.8)

which is sometimes called Clapeyron’s theorem of linear elastostatics; a simple proof
of which will be shown later. In this case equation (2.6) can be expressed as

G oUy, ”0
= o4 @9)
The total energy of the system is

Uota = —Up+ I (2.10)

Griffith used the stress solutions by Inglis (1939) to show that the increase in strain
energy due to the elliptic cavity (zero radius) in an infinite plane is given by

2 .2
B
Uz = —”iEg— 2.11)

where B is the plate thickness, and
I'=4a-B-y (2.12)

where y is the free surface energy per unit area, which is clearly a material constant.
Thus, the total system energy becomes, for the case of a thin plate,

ma’c’ B

Uit = — +4aB}/ _ (213)

A schematic drawing of the above equation is shown in Fig 2.2, which exhibits a
maximum at the following crack length,

2yE

a =
¢ ro?

(2.14)

Clearly the critical crack length below which the crack would remain stable decreases
quickly with stress level. Alternatively, the critical stress level that a cracked body can
sustain is

oc =y2Ey I ma (2.15)

for constant load under plane stress condition.
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Fig.2.2 Energetics of Griffith crack in uniform tension: linear elastic.

There are two important implications of equation (2.15). Firstly, the critical stress level
for a given crack length varies with materials, viz some materials (with high surface
energy) are tougher than others. Secondly, the critical stress level decreases with crack
length, ie the larger the crack, the easier it may become unstable.

The physical meaning of the energy release rate G is that it characterises the amount of
energy that would be released if the crack advances a unit length. When this value is
greater than the surface energy of the material, then crack growth would occur,
otherwise, no crack propagation would be possible. It should be pointed out that
equation (2.9) is correct only when the cracked body behaves linearly; if the object is
nonlinear elastic or considerable plasticity occurs, equation (2.8) is no longer valid and
hence the original equation (2.6) should be used instead. A graphical illustration is
shown in Fig. 2.3. For linear elastic problem, the potential energy /=U, — W is equal
to the area of the triangle (but opposite in sign), incidentally it is also equal to the
strain energy in this instance. If the elastic body is nonlinear, like rubber, /7is equal to
the upper hatched area, while Us is actually equal to the area below the load-
deflection curve.

Linear elastic Nonlinear elastic

P P

Fig. 2.3 Potential energy for (a) linear and (b) nonlinear elasticity.




DSTO-GD-0103

14

2.3 Energy Release Rate G and Compliance

The energy release rate G defined in equation (2.9) provides a powerful tool for
studying fracture problems of cracked bodies from a global view. The energy release
rate is sometimes referred to as the rate of strain energy flux flowing toward a crack tip

as the crack extends.

Let us consider the load displacement curve for a cracked specimen made of linear
elastic media as shown in Fig.2.4. When the crack has length a, the specimen is less
compliant than when the crack has length a + &a. The compliance C of the specimen is
the displacement per unit load, i.e the reciprocal of stiffness. In general we may write

v )
=5 (2.16)

which is a geometry constant, dependent on crack length and dimensions of the body.
Here the displacement u refers to the relative displacement measured between the
loading points; see Fig. 2.4. A cracked body may be subjected to loads or displacement,
or a combination of both. In the following we will consider two extreme cases:
constant load (Fig 2.5a) and constant displacement or ‘fixed grip” condition (Fig.2.5b),
separately.

L‘HIIE >
: '_a__‘

.JL"Y:"" ?
'

P

Fig.2.4 Geometry of an edge cracked plate under tension
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LoadP 1 oI Load P -
S P P, | ; ......... /
a : P, |,
atda
at+da
v U, ' u, '

Fig 2.5 Load displacement characteristics for cracked bodies: (a) constant load crack extension,
(b) crack extension under constant displacement.

2.3.1 Constant Load Conditions

As discussed previously, the potential energy in the specimen is the area above the
load-displacement curve (the area below the load versus displacement curve is the
strain energy stored in the specimen while the area of the rectangle is the work done
by external force). The potential energy change 317 is the difference between the
external work done and the stored but recoverable elastic strain energy. The energy
stored in the specimen for a crack of length a+da is greater than in the situation
when the crack was length a, the increase being

1 1
Uy ="2'P1uz "Eplux (217)

However, to attain this stored energy the load has moved a distance u>-#1 and so the
work done by the external applied load is

oW =P (u, —u,) (218)

Clearly the elastic energy stored in the system which could be released back to the
environment after crack extension is less than the work done by the applied loads. The
amount of the energy that appears to have ‘vanished’ is equal to

1 1 1
—0ll=6W - 68Uy = P (u, _ul)—z'Pl(uZ "”1)=5P1(u2 —u1)=5P15u (2.19)

which is the hatched area in Fig. 2.4(a), equal to the energy spent in increasing crack
surfaces. In this case, the energy required for crack extension is not supplied by the
existing strain energy stored in the system, but the work performed by the external
loads; the elastic energy of the solid is actually increased. Thus the term “strain energy
release rate” in this case is physically inappropriate. A better name should be
“potential energy release rate”.

15
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2.3.2 Constant Displacement Condition

Similarly, under fixed grip condition, an increase in crack length causes a decrease in
stored elastic strain energy given by

1
8Uy = (B, =P, =5 1,6P (220)

which is the hatched area in Fig.2.4(b). Since no external work is done, the above
energy is that spent in increasing crack surfaces.

2.3.3 Determination Of Energy Release Rate From Compliance

To summarise the above results for constant load and constant displacement,

1
e the constant load condition requires a potential energy release rate of ) Péu.

e ' the fixed-grip condition requires a potential energy release of %ué‘ P.

In mathematical terms as 54 tends to zero we can say that the compliance of C is the
same for both cases, which is the same as stating that the difference between the two
shaded areas of Fig.2.5 tends to zero. In other words, Su=CHP, and the release of
energy for crack extension in both cases is given by

%CP&P 2.21)

Therefore the strain (or potential) energy release rate (with respect to crack length) for
small crack extension 54 can, therefore, be found experimentally in a plate of uniform

thickness B as

2
_Pou_ P oC (2.22)
204 2 A

Thus by taking measurements of the compliance of a specimen with different crack
lengths, it is possible to determine §C/8a for a given crack length and so determine G.
Note 4=a-B when there is only one crack tip (e.g. edge cracked component) and
A=2a-B for centre cracked system. However, it is important to note that the strain
energy release rate is identical for constant load and constant displacement conditions.
As indicated by equation (2.22), the strain energy release for a given applied load is
proportional to the differentiative of the compliance with respect to crack length,
independent of loading condition.
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Fig. 2.6 Double cantilever beam

Example 2.1 For a double cantilever beam (DCB) with #>>2h and [>>2h, as shown in
Fig.2.6, determine the strain energy release rate G.

Solution
The two arms of the DCB may be considered to a first approximation as cantilevers.
Method 1: The displacement at the loading point is

3 3
u= Pa where = Bh
3EI 12

hence the relative displacement of the two points of load application is

8Pa’
v=2u= 3
EBh
thus the compliance of the specimen is
_v_ 8
P EBR
It follows that the energy release rate G is
_PPX_12P4°
2Ba EBK

Method 2: The strain energy stored in the cantilever beam specimen can be easily

obtained by integration,

M’ (x)
2EI

dx

Uy =2
0
according to equation (2.9) the energy release rate is

17




DSTO-GD-0103

18

U, dUg _Mz(xza)_P2a2 _12P%a’
" U4 Ba EBI EBI  EB*R®

G

Example 2.2 Determine the energy release rate for a end notched flexure (ENF)
component, shown in Fig.2.7, which is adhesively bonded.

+ M(¥)

v

a L 2L
Fig.2.7 End notched flexure specimen and bending moment diagram.

Solution Similar to the previous example, the strain energy stored in the component is

1 2 L 2 2L 5 2
UE=2I(2M) dx+IM (x)dx+IM2(x)dx
2E] 2FI, ; 2E],

a
0 a

where E is the Young’s modulus of the plate and

i

Px
Ml(x)=7 1 =12

3 3
Mz(x)=PL—-}E- ]2=M:§£h__
2 12 12

SO
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(M ™) 4
2E],

“12P*x? £12P*x?
U, = | =—=dx+ dx +
3 OI16EBh3 !64EBh3 I

hence the energy release rate is

G U, U, 3Pa’ _ 3P’a> _ 9P%d’
A Bdl 4EBzh3 16EB*H® 16EB*h®

Example 2.3 Determine the energy release rate for a cracked lap shear (CLS) specimen
(see Fig.2.8).

crack tip

v

Fig.2.8 Adhesively bonded cracked lap shear specimen

Solution Assuming the bending deflection of the overhang region does not contribute
to the strain energy, the strain energy stored in the system is

L-a L+l 2
P? P

Ue = OI 2(EA)0“x+L_Ia 2EA),

thus the energy release rate is

6o Me _ Ay 1[ P’ P’ ]_PZ Et,

+ =
M Ba B| 2Et +Ept,)B 2Et,B| 2B Et +Et,

It is interesting to note that, unlike the previous example, the energy release rate for a
cracked lap shear specimen is independent of crack length. This feature offers a
convenient method in determining the critical energy release rate, as the precise
location of the crack tip is not important.

It should be pointed that the above method applies only when the entire system,
including adhesive, is elastic. When the adhesive yields, a rather more complicated
analysis using elasto-plastic fracture mechanics is required. Furthermore, the local
bending effect due to load eccentricity is ignored in the present analysis. In reality,
when the overhang length, ], is sufficiently long, geometrically nonlinear deformation

19
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would occur, which will induce a local peel stress at the crack tip, hence a mode I
fracture component.

2.4 Stress Intensity Factor K

Before proceeding to consider the stress analysis of cracked bodies, it is important to
distinguish basic ‘modes’ of stressing. As shown in Fig.2.9, the three basic modes are:
opening (mode I), in-plane shear (mode II) and out-of-plane tearing (mode III). Model
corresponds to normal separation of the crack faces under the action of tensile stresses,
which is by far the most widely encountered in practice. The difference between Mode
II and Mode I is that the shearing action in the former case is normal to the crack
front in the plane of the crack whereas the shearing action in Mode Il is parallel to the
crack front. A cracked body in reality can be loaded in any one of these three, or a
combination of these three modes.

By means of various techniques, the stress, strain, and displacement fields associated
with a crack embedded in an elastic solid can be solved analytically. One of such
method is due to Westergaard, who introduced the following stress function,

®=ReZ +yImZ (2.23)

where Z=Z(z) is an analytical function of the complex variable z=x+iy. Here
Z= jZ(z)dz and Z = IIZ(z)dzdz. The semi-inverse solution (mainly by trial-and-

error) for a crack in an infinite plate subjected to a remote stress o is

(2.24a)

o
7(2) = ——————
2 J1-(a/z)’

Note the origin of the coordinate is at the center of the crack. By transforming the

origin to the right-hand crack tip, ie, z=a+ re™, all the stress components can be
derived. In the limit of small enough values of r/2, equation (2.24a) can be expressed as

O"/; o072

Z= T2 (2.25b)
From differentiation of equation (2.24a),
‘ -oad’
Z'(z)= m (2.26¢)
hence
Z'= %e‘”‘“ (2.27d)
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For the configuration shown in Fig.2.10, the stresses can be expressed in a simple form,
noting equation (1.14),

K
g = T-z——ﬂ?_fu(g) (2.28a)
and displacement
K |r
= [—g(0 2.25b
=5 250 (2.25b)

where the K terms are the stress-intensity factors which embody the loading and
geometry conditions. A complete list of the stress and displacement fields for three
fracture modes is given in Table 2.1. The corresponding formulae for polar coordinates
are given in Table 2.2.

—), $ ~ x,xj.’d

Fig.2.9 Basic modes of crack extension; (a) opening mode, (b) sliding mode, and (c)
tearing mode.

The relative displacement between crack faces at position x is given by

> E ma

u (2.29)

for plane stress condition. Clearly the maximum crack opening occurs at the centre of

2K ’
the crack, equal to E— i. The stress distribution ahead of the crack tip, not
/3

necessarily near crack tip, is

21
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= 2.30
o A2ar+ ( )
_ o(a+r) (2.31)

Fig.2.10 A crack of length 2a in an infinite plate

Example 2.4 Estimate the relative size of the singularity dominated zone ahead of a
through crack in an infinite plate subjected to remote uniaxial tension.

Solution Equations (2.27) and (2.28) can be rewritten as

o = K (Q+r/a)y2r/a
¥ 2w ol a+(r/a)’

and

K | (+r/a)2r/a
= ——== —2r/
e \/57‘-(\/2r/a+(r/a)2 ’ aJ
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Clearly the actual stress normal to the crack plane o, is higher than that given by

equation (2.25a). Hence the singular solution is valid only near the crack tip; we define
this as the singularity dominated zone, as shown in Fig.2.11. The size of this zone can be
estimated by considering the ratio of the actual stress on the crack plane to the
singularity limit. This is depicted in Fig.2.12. Note that the stress in the y direction is
close to the singularity limit for relatively large distances from the crack tip, but the x
stress diverges considerably from the near-tip limit. Let us arbitrarily define the
singularity zone as the region within which the deviation is less than 20% for the x
stress; this represents a value of r/a=0.02. In other words, the term “singularity zone”
is approximately one-fiftieth of the half crack size.

zone

singularity dominated

Fig.2.11 Distribution of the stress normal to the crack plane

Gij /(KI\/EEE)

1.1

1.0

09

0.8

0.7

0.6

Sl dellt el el

PR PR

size of

singularity
zone

r/a

0.06 0.

ob--f-r----+r—-—---

g8 0.10

Fig.2.12 Ratio of actual stresses on the crack plane to the singularity limit
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Table 2.1 Stress and displacement fields ahead a crack tip for modes I, II, 111

Mode I Mode II Mode I1I
O L cosg 1- singsinﬁ Ky sin— 0 [2 +cos— 0 coség] 0
N2mr 2 2] \/ 27r 2 2
Ty I_cos— _1 + singsin}—g— Y8 s1n 0 cos> 0 cos— 0
27 2 2 N 27 2
r . 6.6 3 Ky 0 0 . 30 0
» cos—sin—cos— —2A_cos—|1-sin—sin—
27 2 2 N 27 2 2 2
o, 0 plane stress 0 plane stress 0
v(o, +0,) planestrain o, +0,) planestrain
T 0 0 Ky, .
xz ——%_sin
N2mr 2
Ty 0 0 —I—{\/z—’__L cos
o
x 0
* K —’—‘—cos—g-[rc—l+25in2 Q} ﬁwﬂ—r—sing[x+l+20052 Q:I
2uN2xr 2 2 2uN2z 2 2
0
vk I—Sin—e-[K+1—2COS2 Q} ﬁ\,—r—cosg[x—l—Zsinz 2]
2u\N2z 2 2] | 2u\N2z 2 2
" —-‘—;—(a +0,,) plane stress ————(0' +0 ) plane stress K ’_’_‘_ sing-
u N2 2
0 plane strain 0 plane strain

u is the shear modulus, k=3-4v for plane strain and k=(3-v)/(1+v) for plane stress

It is easy to show that the principal stresses for mode I are

24

o, = ﬁ—cosg(l + sing)
! 27 2 2

(2.32)

(2.33)
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Table 2.2 Stress fields ahead a crack tip in a polar coordinate system

Model Mode II Mode III
o, K, o[ . 2(9) K, . 9[ . z(aﬂ 0
cos—|1+sin“| — sin—|1-3sin°| —
27 2[ 2 N2mr 2 2
0-99 Kl 3(0) 3K]I . 0 2(9) 0
—L=cos’| — ——=sin—cos”| —
2mr 2 P 2 2

T K, . @ 2(0) K, @ . 2(0) 0
siIn—cos”| — —=—cos—|1—-3sin“} —
N2 2 2 N2 2 2

sz O 0 KI]I Sin—
N2nr
z'yz O 0 KII! cos

In general the stress intensity factor depends on the applied stress, crack size, and the
‘geometry,

K=Yom (2.34)

where Y is called the geometry factor, signifying the geometry of a crack system in
relation to the applied load. Normally this geometry factor can be looked up in
technical reference books. For a centre crack in an infinite plate, Y = 1.0. The geometry
of the cracked body imposes an effect on the new crack tip stress field, thus modifying
the value of the stress intensity factor. In general, if the edge crack is situated in a strip
of finite width, w, then the correction factor becomes a function of (a/w)

Y=f(alw) (2.35)

The simplest geometry factor is that for an edge crack of length, 4, at the edge of a
semi-infinite half space: the increased ability of the crack to open causes the stress
intensity factor to increase by some 12%,

K=112 0 Jm (2.36)

The determination of this geometry term is a problem of stress analysis. Any realistic
geometry requires recourse to numerical methods, as very few closed form solutions
exist. The most popular and efficient method is finite element analysis. Other
techniques include experimental and semi-theoretical; more will be said about this
later. Table 2.3 lists stress intensity factors and the geometry factors for a number of
practical configurations. A more comprehensive list could be found in a two-volume
handbook (Murakami, 1987).
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Table 2.3 Stress intensity factors

Geometry Stress Intensity Factor
1. Crack in an infinite body
N 3 K,=0VJm
-_———
}4—2a —
c

2. Centre crack in a strip of finite width

K, = Jsec%a\/—nzz—

K, =1120m
4. Centre crack in a finite width stri
p KI — ﬁ) a-.\/y_z";
o W
rrrrretr al W (/W)
w
2 WW=10 hW=w
P m— H 0 1.12 1.12
2
=28 — 02 1.37 121
1 0.4 2.11 1.35
RN 05 2.83 146
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5. Edge crack in a beam of width B subjected to a _6M
bending K, = W o+ ma where o= W
R RE W flam
0.1 1.044
M M 0.2 1.055
0.3 1.125
0.4 1.257
0.5 1.500
0.6 1.915
6. Thin-section (plane stress) double split beam
P
K, =23 “‘3%‘
c
I
' 2
] =
7. Circumferentially notched rod 0.932P/D D
Kl'—"‘"'———— rﬂd—z for 12_:1—<21
8. Compact tension specimen (CST) K =y Pz

BJW

a 1/2 a 3/2
Y=16.7(———) -104.7[—) +
: w W
0.275W \ T N

+369.9(—) —573.8(——) +
w w
.6 92
0.6W \ a +360.5(—“—)
, w

27
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9. Single-edge notch bend (SENB), thicknessB~ B=W/2

P
! ¢,y tPIE

BIW

w J _I_; ) a 1/2 a 3/2 a 5/2
P ) Y= 1.63(———) - 2.6(—) + 12.3(—)
4w | 174 w. W

t
r
P2 P2 a 772 a 9/2
o2 s )
w. /4
10. Crack emanating from a hole in an infinite a
bOdy K 1= E g 7a
N a/R flaR)
T T T T 1.01 0.3256

1.02 0.4514

1.04 0.6082

1.06 0.7104

1.08 0.7843

1.10 0.8400

l 1.20 0.9851
. 1.25 1.0168
1.30 1.0358

1.40 1.0536

1.80 1.0495

A few points of interest arise from these solutions. Firstly, the stress intensity factor
defines the amplitude of the crack tip singularity, and consequently the intensity of the
local stress field. Local stresses near the crack tip are proportional to K, which
uniquely defines the crack tip conditions. This single-parameter description of crack
tip conditions is probably the most important concept of fracture mechanics. Secondly,
it should be pointed that these solutions are valid only in the vicinity of the crack tip;
higher order terms need to be taken into account when far field information is
required.

2.5 Superposition Method
Since the stresses and displacements are linearly proportional to the stress intensity

factor, it follows that the superposition principle also applies to crack problems. This
provides a very important tool for applying fracture mechanics to practical problems
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with the aid of handbooks. The underlying principle is that stresses induced by
various loads can be added together. It should be pointed that the superposition
method applies only to cases where a structure is subjected to various loads but of the
same mode. For example, the crack tip stresses for a cracked component under
combined tension and bending are,

K;ensian K;mnding
= £ () + ——f,(O 2.3
%= 1 (0) Nor 1;(6) (2.37)

Because the angular function f;(6) is the same for the same fracture mode, the above
equation can be rewritten as

K;alal
o, = = £;(6) (2.38)
where
K;otal - K;ension + K;)ending (2.39)

In general, the stress intensity factor for a combination of load systems A, B, C can be
obtained simply by superposition

K,=K!+K} +K; (2.40)
and similarly for modes IT and IIL

Example 2.5 Determine the stress intensity factor for a edge cracked plate subjected to
a combined tension and bending.

M M
Fig.2.13 An edge cracked plate under tension and bending

Solution

From Table 2.3, the stress intensity factor caused by the bending (case 5) is

6M
e-al3)
Ju W) BW? Vma

The stress intensity factor for the tension load (case 4) is

29
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a) P

Thus the total stress intensity factor is
—( P a oM a
“ /"W).

P oM
F i =(0.2, we have K = +/ (1.21 +1.055 ) .
or a ratio a/W: we have 7 B ITE

Example 2.6 Consider a symmetric case of two very small cracks at a circular hole (See
Fig.2.14(a)) along the x-axis in a wide plate subjected to uniaxial tension ¢ along the
y-axis. Determine the stress intensity factor.

2.5
c : -
t 11 2.0 JPLAEAN
Phd K=3360Jz(a-R)
7
1.5 , 7 Bowie solution
F
I
0
1.0 1.2 14 1.6 1.8 2.0
c a/R

Fig.2.14 Stress intensity factor correction factor for a crack emanating from a hole.
(a) Two symmetrical cracks emanating from a circular hole and
(b) the stress intensity factor.

Solution Due to the stress concentration near the circular hole (Ki=3) an element at the
rim of the hole is subjected to a tensile stress 30 along the y-axis. By the principal of
superposition and for a small crack length, we have

K, =112(30)ym(a—R) =3360a, /1 _R 336 /1 - —}EG«/}E
a a

which is shown in Fig.2.14 together with the numerical solution obtained by Bowie
(1956).



DSTO-GD-0103

Clearly for very short cracks the above approximation is very close to the numerical
solution. For long cracks (crack length a >> R), we may assume as an engineering
approach that the combination behaves as if the hole were part of the crack, hence

K = oJma . As shown in Fig.2.14, these two asymptotic solutions provide two bounds
to the actual solution.

2.6 Relationship Between G and K

We can now return to the Griffith’s energy concept, with special reference to its
relation to the stress intensity factor. Proceeding as before, we may identify the
mechanical energy release during the crack extension with the work done by
hypothetically imposed surface tractions. As illustrated in Fig. 2.15, forces are applied
to the crack edge, sufficient to close the crack over an infinitesimal distance. The work
done by this force is obviously equal to the amount of energy that needs to be
consumed in order to make the crack grow by this distance. '

4» y 1 y
> l l o x
» ¥ >
5
Fig. 2.15 Calculation of strain energy release rate
Thus the strain-energy release for a crack growth of § may be expressed as
8U, =2B[ yo,udr=2B[ touds (2.41)

where the factor 2 arises because the crack has two opposing crack surfaces, and the

factor 1 is because of the assumed proportionality between tractions and the

corresponding displacement. The thickness of the plate is denoted as B. After
substituting the expressions for oy and uy (see Table 3.1), the integration of equation

(2.34) leads to
,5 r K™ |cos®
= 511_)0 Y- f I ¢25sm¢cos¢d¢

(242)
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for plane stress. Similarly, for plane strain condition (see Chapter 1)

32

G=(1-V )"7' (2.43)

It can also be shown for mode II and mode III,

(12 Kllz _ sz
Gi=(1-v )—————-E and Gur=(1+v) 7 (244)

for plane strain condition.

The total energy release rate in combined mode cracking can be obtained by summing
up the energies for different modes:

(-2 2 2
K K K
L T Ty (for plane stress)
E E E

G=Gir+Gu+Gn =
2 K2 K2

K
(1- v2)——EL +(1- vz)% + —g—l—(l +v) (for plane strain)

However, it is important to note that the derivation of both the stress intensity factor
and the strain energy release rate is independent of the actual fracture process hence
critical condition of materials. In other words, these only represent the ‘driving’ force
for crack growth and bear no relations to the materials’ ‘resistance’. This will be
discussed in the next chapter.

Example 2.7 For double cantilever beam (DCB) shown in Example 2.2 determine the
stress intensity factor K using elementary beam theory for applied load P or applied
displacement .

Solution

From the previous analysis, the energy release rate for the cracked system is
EB*R’

the stress intensity factor is, according to equation (2.40)

243  Pa

)= =, Bi*"

for plane strain condition. Obviously the ‘driving’ force increases linearly with crack
length for a constant applied load. The stress intensity factor can also be expressed in
terms of the displacement, u,

K=yEG/(1-V

(2.45)
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It should be observed that, under displacement control, the stress intensity factor
decreases as the crack extends. Therefore the system is a stable one, in the sense that
the crack would stop growing after a certain crack advance unless the displacement is

further increased.

Example 2.8 Determine compliance of a centre cracked specimen of width W and
crack length 2a. The thickness and height of the specimen are B and H, respectively.

The stress intensity factor is given in Table 2.3.

« w
S H
§4—2a —
Fig.2.16 A finite centre cracked plate
Solution From Table 2.3 the stress intensity factor is
K=, /sec Ea%
w
Since
G- & _PdC
2 4 4Bda
for centre cracked plate and
2
c-K
E
we have
(dC) 4B , ma 4
—| =—=0o"msec— = 5
da’/p EP W  EBW

hence the compliance is

ma SGC(

33




DSTO-GD-0103

where constant Co represents the compliance of the specimen without crack, that is

A eH H

=P GBW EBW

To facilitate the integration, we adopt the following approximation

T
72 oo 22 = tan( ) W~ tanf 22}
woO\W w sin(ﬁ"-) w
w

For comparison, two ratio between the two functions are shown in Fig.2.17. It is seen
that the error is less than 10 percent up to a ratio 2a/W =0.5.

1'1 T T 1 T 5 A \ T ll'
] ' I 1 ]
o ! ! ! ! A — - y=x sec(x) ]ll
~ 1. Y O (P U A l _ _ v=tan(x SN i
= ~TTTT e g
?“ [ | 1 T T
Y] SR N SU S 23| SR S SV 2 A
= I I { [ O ! ! ! |
= N N g Y
T 08N § 2f---denmndemeot
\l:/ 1 I ' e 1 1 J 1
] [} t 1 1 ] t ]

B 07} -codemedeeecboci NG et L
I | i i | | : I
1 1 ] 1 1 | i

0.6 + ‘ ‘ ‘ 0 . : ‘ .

0 02 04 06 08 10 0 02 04 06 08 1.0

2a/W a/W

Fig.2.17 Approximations to hyperbolic function xséc(x) by tanx

Now the compliance can be expressed as

4 na H H W4 m
C=——Ih|lcos—|+——=——|1———In| cos—
EBrx W/ EBW EBW Hrx w

This is graphically shown below. Clearly the compliance of the specimen increases
rapidly as the crack length increases.
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These two examples demonstrate that the relationship between the energy release rate
and stress intensity factor is not only useful in determining the stress intensity factor
for a cracked component from compliance measurement or calculation, but also useful
in assessing the compliance of a cracked component.

]
- W/H=0.5 E
1
]

Compliance ratio C/C,

Fig.2.18 Compliance of a centre cracked plate.
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3. Plastic Yielding at Crack Tip

In real materials, the theoretically very high elastic stresses in the vicinity of a crack tip
exceed the yield strength of the materials. Consequently local plastic yielding will
occur. Plastic yielding and the subsequent local elastic-plastic deformation at the tip of
a crack plays an extremely important role in the fracture process of materials.

3.1 Irwin’s Model

To determine the plastic zone at the crack tip, Irwin presented a simple model
assuming the material is elastic-perfectly plastic. Consider the distribution of tensile
stress oy, acting across a line extending ahead of and in the same direction as the
crack. The local y-stress near the crack tip is,

3.1)

where 7 is the distance from the crack tip. As a first approximation, we can assume
that the boundary between elastic and plastic behaviour occurs when the stress given
by the above equation satisfies a yield criterion. For plane stress conditions, yielding
occurs when oy = oys, the uniaxial yield strength of the material. Then the distance
ahead of the crack tip over which this happens is

=== G.2)
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Fig. 3.1 First-order and second-order estimates of plastic zone size

However, when yielding occurs, stresses must redistribute in order to satisfy
equilibrium. Since when the elastic stress distribution within the plastic zone is
replaced by a constant yield stress, the equilibrium condition along the y direction is
violated. The cross-hatched region in Fig. 3.1 represents force that would be present in
an elastic material but cannot be carried in the elastic-plastic material because the
stress cannot exceed yield. The plastic zone must increase in size in order to
accommodate these forces. A simple force balance leads to a second order estimation,
assuming the force carried by the elastic stress distribution is the same before and after
plastic yielding,

a6 K
O'ysrp = _EO'yydr = _E—\/—z_;dr (3.3)
hence
1| K ’
p= —[—‘I“J (34)
z\o,

Alternatively, the above result can also be obtained by considering a fictitious crack
extending to the centre of the plastic zone, its tip centring at a +%rp, where 1, is the
size of the plastic zone yet to be determined. Stress distribution directly ahead of the

crack is thus
O'Jﬂ(a +r,/2)
.6 =
» N2mx

Now we assume that the boundary between elastic and plastic regions is given by
o, =0, atx=r,/2, hence,

(3.5)
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) 1 1(k, Y i
=q—| —————~—|— .
rp O'y, 1(0_)2 T o_ys ( )

which is the same as equation (3.4). These results need to be modified for plane strain
condition; see below.

Example 3.9 Determine the value of K; where the plane strain plastic zone engulfs the
singularity dominated zone.

From Example 2.4 the size of the singularity zone is estimated to be equal to a/50.
According to equation (3.4) we have

2
1{ K a
— <—
n[cr ) 50

ys

or

K<014lo, m

Therefore for a centre cracked plate, the applied stress has to be less than
approximately 14.1% of the yield stress of the material; otherwise the stress intensity
factor K would no longer provide a unique characterising parameter. Under plane
strain condition, however, the applied stress can be higher, up to 35%. This will be
discussed later.

3.2 The Strip Yield Model

A different approach to finding the extent of the plastic zone was proposed by
Dugdale and Barenblatt, who considered a long, slender plastic zone at the crack tip in
a non-hardening material in plane stress. The strip yield plastic zone is modelled by
assuming a crack of length 2a + 2p where p is the length of the plastic zone, with a
closure stress equal to oys applied at each crack tip, see Fig.3.2. The size of pis chosen
such that the stress singularity vanishes at the end of the effective crack:

Ko'+Kp =0 (37)
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2a+2p=2c¢

¢
IR

Fig.3.2 The strip yield approach.

The stress intensity due to the closure stress can be estimated by considering a normal
force P applied to the crack at a distance x from the centre line of the crack; the
resultant stress intensity factors at the two crack tips are,

P |la+x
K, =— 3.8
A \/E a-x ( )

P la-x
Ky=—— 3.9
Y k| (3.9)

Here the closure force at a point within the strip yield zone is

P=-o,dx (3.10)

thus the total stress intensity at each crack tip resulting from the closure stresses is
obtained by replacing a with a+p=c and so

o, ¢l [e=x Je+x
Kp=——= J +J
T e !{ c+x c—x}d‘
20,¢%  dx 2 a
=-—2= =-Zo +Jmccos™ (=
J; !{c'z"_'“x"z T s (C)

The stress intensity from the remote tensile stress, Ko = o+/7c, thereafter, equation
(3.7) leads to

(3.11)
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g cos(g _cr_] (3.12a)

p= a[sec[z —E—J - } (3.12b)
20,

Neglecting the higher order terms in the series development of the cosine, p is found

ie.

K2
. ;’02 (f- <«<1.0) (3.13)
ys s

which is of the same order as equation (3.4) (the difference is about 23%).

3.3 Plane Stress versus Plane Strain.

From Chapter 2, the triaxial stress state directly ahead of a crack tip is, 0, =0, =0,,,
03=0 for plane stress and o, = 2v0,, for plane strain. According to the Von Mises yield

criterion, in terms of principal stresses,
(o, -0, )’ + (o, - 63)2 +(o, -0, )2 = 20—; (3.14)
where oys is the uniaxial yield stress. It can be easily shown that

Oy

o,=11-2v

o,  planestress

plane strain (3.15)

For v=1/3 we have effective yield stress oy = 30ys for plane strain. This means the
plastic zone size under plane strain condition is approximately one ninth that under
plane stress condition. In general, the effective yield stress can be expressed as,

0, =Q0, (3.16)

y

where o is termed the plasticity constraint factor. From previous analysis, a=1 for
plane stress and a=3 for plane strain. For a finite thickness plate, an empirical value

oftenused is o = \/5 , that is,

1.0 plane stress
a=41.732 finite thickness (3.17)
3.0  plane strain
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Therefore the size of the plastic zone under plane strain condition is smaller than
under plane stress condition by a factor of 1.732. In this case, the maximum applied
stress level above which LEFM would become invalid is approximately three times
higher, up to 35%.

Example 3.10 Determine the plastic zone length at fracture for a mild steel with Kic =
70 MPa+/m and o ,» = 450 MPa for (a) plane stress and (b) finite thickness condition.

Solution Under plane stress condition,

2 2
p o=l el 1 (70) =77x10"  (m)
i AN 3.14\450

ys

and for finite thickness condition (taking & =+/3),

2
1{ K. 1 ( 70 )2 4
=— = =2.567x10 m
L ﬂ[ﬁays) 314\ 3 x 450 )

3.4 Shapes of Plastic Zone

As the stress state ahead of a crack tip is three-dimensional, the shape of the plastic
zone is not necessarily a circle, but needs to be determined using an appropriate yield
criterion. Either the Tresca criterion or the Von Mises criterion is usually applied.
Adopt the von Mises criterion given by equation (3.12), noting the crack tip stress
distributions given by equations (2.29) and (2.30), the boundary of the plastic zone as a
function of @ can be derived for plane stress condition and plane strain condition

[0'3 =v(o, +0, )], respectively,

2
r(0)= K 1+ Esin2 @+ cos@| plane stress (3.18)
Y anel 2
7o,
K* [3 ., 2 .
r(0)= " Esm 6+ (1-2v)"(1+cosd)| plane strain (3.19)
y

These two equations are plotted in Fig.3.3. Note that these are the first order estimates.
Nevertheless, it indicates significant differences in the sizes and shapes of the mode I
plastic zones for plane stress and plane strain conditions. The latter condition
suppresses yielding, resulting in a smaller plastic zone for a given stress intensity
factor. Similar equations can also be obtained for Mode II and Mode I11.
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Fig.3.3 Crack tip plastic zone shapes under mode I loading

A modification similar to that outlined in section 3.1 can also be carried out to improve
the above estimate; the second order estimate is just twice that given in equations
(3.18) and (3.19), i.e.

r,(8)=2r(6) (3.20)

The three dimensional slip planes of a mode I crack are shown in Fig.3.4 for plane
stress and plane strain. For a finite plate, due the free surface effect, the plastic zone
looks like a ‘dog-bone’, as depicted in Fig.3.4. Due to this thickness effect, the plastic
constraint factor normally lies between 1 and 3, for example a=1.7. It is important to
point out that although the plastic zone at the middle of the plate is smaller than that
near the surface, the high triaxial stress that exists at the middle of the plate (this is
sometimes called plastic constraint) causes crack growth to occur there first, under
both static and fatigue conditions.
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N

Fig.3.4 Slip-planes around a mode I crack for (a) plane stress and (b) plane strain

Fig.3.5 Schematic representation of the three-dimensional nature of the plastic zone around a
crack tip in finite plate
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3.5 Crack Tip Opening Displacement

Due to plastic deformation at crack tip, the originally point sharp crack tip would
become blunt (otherwise stress singularity will exist), resulting in a finite radius at the
tip of the initial crack. This phenomenon is normally called crack tip opening, as if the
tip of the crack opens up. One simple way of estimating this radius is through the
fictitious crack method discussed in section 3.1. Since the fictitious crack tip is at a
distance rp/2 ahead of the initial crack tip, a finite gap now exists between the faces of
the fictitious crack at the tip of the initial crack, as depicted in Fig.3.6, which is equal to

5y =Ko \/(a+r,,/2)2—a2 4K, (K,]_i](_f_

yT R a E'z\o, ~7rE'0'y

(3.21)

where E’ and o are the effective Young’s modulus and yield stress, respectively,
which are defined by equations (1.8) and (3.16) for plane stress and plane strain. This is
shown in Fig.3.7.

crack tip opening
displacement

Fig.3.6 Crack tip opening displacement.

A similar estimate can be obtained from the strip yield model, although the
calculations are slightly more involved. Here only the final result is given,

5 E;Gyal ad K, 3.22
T \\20,)) E'o, (3:22

which is about 27 per cent lower than the Irwin model prediction. Again E” and oy for
plane strain condition are as defined previously. The fact that the crack tip would
attain a finite radius due to plastic deformation makes the distinction between notch
and crack even more blurry. But it is important to note that the crack tip opening
displacement is stress dependent, unlike notch root radius.
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Fig.3.7 Opening profile of a fictitious crack

However, the definition of crack tip opening displacement in general is not so
straightforward, as the relative displacement between the upper and lower crack faces
at the very tip of the crack is mathematically zero. A more general, alternative
definition is given by Rice (1968): crack tip opening displacement is defined as the
opening where 45° lines emanating back from the crack tip intercept the crack faces, as
depicted in Fig.3.8. Often the crack opening profile behind the crack tip is plotted
versus the distance from the crack tip, and then the height at the intersection between
the crack opening curve and line u,=r is defined as the crack tip opening

displacement.

uy(r) u,=r

CTOD/2

Fig.3.8 Definition of CTOD and possible Finite Element Method procedure
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4. Fracture Criteria

4.1 K as a Failure Criterion

From previous analysis, it is clear that when stresses at the crack tip exceed yield
(which always happens for engineering materials), plasticity results. However, if the
redistribution of stress has a minimal effect on the crack tip elastic stress field, then the
K approach to defining the stress field is still of sufficient accuracy for engineering
applications. Thus, if plasticity is minimal, then a LEFM approach is justified.

Of importance to practical applications is the critical stress and strain state at the crack
tip zone, which, when attained, causes the crack to propagate in a brittle, catastrophic
manner. The most dangerous situation occurs when a crack is in a high-energy but
constrained field that permits only slight plastic deformation at the crack tip.
Expressed another way, the amount of energy absorbed in plastic deformation is
reduced to a minimum extent and much more energy is thus available for fracture, i.e.
crack propagation. This critical state can be described by a critical stress intensity

factor K.,
K=K, (4.1)

which may imply either a low stress acting on long crack or a small crack suffering a
high stress. It is important to note the different meaning of the two sides of the above
equation. The left hand side represents the driving force of the crack, which depends
on the applied loads and the geometry of the components. The right hand side of
equation (4.1) signifies the materials’ resistance to fracture, which is an environment
and load rate dependent material property.

Laboratory testing indicates that the fracture toughness value depends on the
thickness B of the specimen tested. The plane strain fracture toughness of the materials
is a material property (denoted as Kic, where subscript I denotes mode I loading).
Under plane strain condition, since the crack tip plastic zone is small in relation to the
component thickness, plastic contraction in the through thickness direction is
suppressed by the surrounding elastic material. Tensile stresses are set up in the
thickness direction of the plastic zone so that the stress state is triaxial, giving rise to
constrained plastic deformation. Table 4.1 lists some typical values of plane strain
fracture toughness. As before, the suffix I refers to the tensile opening mode of crack
extension, whilst I and III symbolise shear and anti-plane tear modes, respectively.

When the plastic zone is large compared with the component’s thickness, the
triaxiality may be relaxed and the through thickness stresses normal to the plane of the
component will be negligible. In this case, the fracture toughness may vary with the
specimen thickness, B. The form of variation of Kc with specimen thickness is
schematically shown in Fig. 4.1. Beyond a certain thickness, a state of plane strain
prevails (see Chapter 3) and the toughness reaches asymptotic value. If the thickness of
the specimen is reduced, more energy will be dissipated as a result of plastic
deformation near the specimen surface which is under plane stress condition. There
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seems to exist an optimum thickness where the toughness reaches its highest level, see
Fig4.1.

slant shear
fracture lips

J

- thin plate
plane stress

thick plate
plane strain

- T

specimen thickness

v

Fig.4.1 Effect of thickness on fracture toughness

In order to achieve plane strain conditions at the elastic-plastic interface, the plastic
zone must be small compared to the specimen thickness, crack length, and width of
ligament:

r,<—, w 2 @.2)
50 50 50
According to the ASTM standard, the following requirements must be satisfied
Ki
a,B,(W-a)225(—)° (4.3)

Oys

which is equivalent to setting the plasticity constraint factor to be V3.
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Table 4.1 Typical values of fracture toughness

Material Young's | Yield stress | Toughness Thickness
modulus E O\ Kic requirement 2.5
(GPa) (MPa) | (MPavm) | (K,c/0 ) (mm)

Steels 210

medium carbon 260 54 108

pressure vessel 470 208 489.6

high strength alloy 1460 98 11

AFC 77 stainless 1530 83 74
Aluminium alloys 72

2024 T8 420 27 104

7075 T6 540 30 7.9

7178 T6 560 23 4.2
Titanium alloys 108

Ti-6Al-4V 1060 73 12.6

(high yield) 1100 38 3.1
Comparative data

Concrete 45 80 0.2-14

Ice 91 85 0.2*

Epoxy 2-3 30-60 0.5-3

Boron fibre 441 3000

Carbon fibre 250-390 2200-2700

Boron/epoxy composite 220-340 725-1730 46

CFRP 70-200 300-1400 32-45

GFRP 38 100-300 20-60

4.2 Residual Strength and Critical Crack Size

e notat room temperature !

Since the severity of a cracked component is characterised by stress intensity factor, K,
and failure will occur when K = K¢, the residual strength of a cracked component is,

(44)
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where Y is a geometry correction factor. Note that the stress o is the gross stress on the
section on which the function a is defined, where residual strength implies a net
section condition. In the case of plane strain K, = K. Itis conservative to assume that

K, = K. if the detailed stress state is not known. The size of the crack at this stress is

called the ‘critical crack size’. This is normally difficult to solve in closed form as Y(a)
is normally a complicated function of crack length and component geometry.
Nevertheless, it can be solved numerically through iteration or, if the value of Y varies
slowly with crack size, e.g. for a relatively small crack in a wide panel, an approximate
value may be used. The critical crack size that a component can tolerate for a given
load is

a,= l(_____l_(_C_____j (4.5)
z\Y(a, !/ W)o

The above two equations provide the basis for fracture mechanics based design
methodologies.

It should be pointed that equation (4.4) is valid only when linear fracture mechanics is
applicable, that is the net section stress level is far below the material’s yield stress.
Otherwise the component will fail in a different mode: plastic collapse. Consider a
centre cracked panel with a finite width W, the absolute highest load carrying
capability is bounded by the plastic collapse strength: the stress level over the entire
section exceeds the yield or ultimate tensile strength of the material. It is easy to show
that the nominal stress at collapse is

o, = o (4.6)

When this happens, the plastic deformation becomes unbounded and fracture will
occur, regardless of the fracture toughness.

Therefore there are two possible failure modes: brittle fracture and plastic collapse.
Should the fracture stress o, be higher than the stress causing failure by collapse, then

collapse will prevail. As a result, the actual residual strength is the lowest of o, and
o ,.- Considering a centre cracked panel, there are three situations in which a plastic

collapse failure would prevail: (1) the toughness is very high; (2) the crack is very
small; and (3) the width W is very small. A sketch is shown in Fig.4.2. The intersection
of the two curves is given by

W*Zao_ S K,
w7 Jmfsec(mal W)

In the short crack regime, the exact transition from one mechanism to the other is not
clear, but a plausible engineering approximation is the ‘tangent’ rule: drawing a
tangent line passing through the ultimate tensile strength point. More accurate
prediction can be achieved by using elasto-plastic fracture mechanics methods.

4.7)
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Ztrength b collapse

fracture
mechanics
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: > 2a/W
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failure by failure by
plastic brittle
collapse fracture

Fig.4.2 Competition between fracture and collapse

Example 4.11 Estimate the failure load under uniaxial tension for a centre-cracked
panel of aluminium alloy of width W=500 mm, and thickness B=4 mm, for the
following values of crack length 22 = 20 mm and 22 = 100 mm. Yield stress o, =350

MPa and fracture toughness Kj.=70 MPa Jm

Solution There are two possible failure modes: plastic collapse and brittle fracture. We

will assess the load level required for each mode to prevail.
(i) 22 =20 mm.
Plastic collapse load Fye = o, - (W —2a)- B=672 kN

K
Fractureload F. = o, - W- B where o, = <
' Jmasec(ma ! W)

thus F. = 790 kN.

The actual failure load is the smaller of the above results, 672 kN.

(ii) 22 =100 mm.
Plastic collapse load Fc = 0, - (W —2a)- B=560 kN

KIC

Jmasec(ma | W)

Fracture load Fc. = o, - W - B where o, =

thus F. = 334.57 kN.

The actual failure load is the smaller of the above results, 334.6 kN.

=394.6 MPa

=172.2 MPa
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4.3 R-curve

Crack extension occurs when the stress intensity factor or the strain energy release rate
attains a critical value. In a truly brittle material like glass or ice, the energy for crack
growth is the surface energy to form the new surface, i.e

G=2y, (4.8)

where the factor “2” is included to represent the two crack surfaces being created. It
should be noted that the energy required for a crack to grow in an engineering
material is much larger than the surface energy. This is because plastic deformation
will inevitably occur near the crack tip region and during crack extension energy is
consumed in deforming the material plastically. In general the fracture criterion can be
written as

G=2W, =2y, +7,) 4.9)

Where y, refers the plastic work per unit area of surface created, and is typically much
larger than yr.

Normally it is convenient to replace 2W; with R, the material resistance to crack
extension. A plot of R versus crack extension is called a resistance curve or R curve,
whereas the plot of G versus crack extension is the driving force curve. It is important
to note that the driving force curve is entirely dependent on the structure geometry
and loading condition, whilst the R curve is a material property dependent on
temperature, environment, and loading rate etc. Most brittle materials exhibit a
constant resistance sometimes called “no R-curve” effect, as shown in Fig.4.3(a). Many
ductile materials, such as low strength steels, possess a rising R curve : a plastic zone at
the tip of crack increases with crack length, hence the energy that would dissipate to
overcome plastic deformation would increase. This is illustrated in Fig.4.3(b). The
exact shape of the R curve depends on the material and, to a lesser extent, on the
configuration of the cracked structure.

0'2 . - 04
GR 1 G GR 1t instabilit
un-stable G,
L€
I stable R
G
a, g
Crack Size - Crack Size
(@) (b)

Fig 4.3. Schematic driving force and R curve diagrams
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If a component, containing a crack or crack-like defect, and experiencing some
plasticity in the vicinity of the crack, is loaded by increments the crack will extend and
stop after each increase in load. This condition is defined as slow-stable crack growth.
In this condition the value of the material resistance K is equal to the applied value K
at any given applied stress. Consequently the fracture toughness (Kc) may be obtained
by the use of crack growth resistance curves (commonly called R-curves). These curves
are a continuous record of toughness development in terms of crack growth resistance,
denoted Kg, plotted against crack extension under continuously increasing values of
stress intensity factor, K. The R-curves characterise the resistance to fracture of
materials during incremental slow-stable crack extension as a result of the growth of
the plastic zone as the crack extends.

Consider a plate with a through crack of initial length 2ao. At a fixed remote stress, o,
the energy release rate varies linearly with crack size. If the material has a flat R-curve,
as shown in Fig 4.3(a), one can define a critical value of energy release rate, Gc,
unambiguously. The crack will grow if the applied G reaches this value. For materials
with a rising R curve, such as a crack plate reinforced with a composite patch,
however, one cannot uniquely characterise a single value toughness value. In this case,
normally we define that crack growth will occur when

g—§>d—RandG2R (4.10)

da da

This corresponds to when the driving force curve is tangent with the R curve, as
depicted in Fig.4.3(b). This can be interpreted as the critical condition when the energy
available in the component for crack growth exceeds the maximum amount that the
material can dissipate. This point of tangency depends on the shape of the driving
force, which itself depends on the shape of the configuration of the structure. For
example, the driving force curve for a through crack configuration is linear, but G in
the double cantilever beam specimen varies with 42 these two configurations would
have different Gc values for a given R curve.

Example 4.12 The following data were obtained from a series of tests conducted on
pre-cracked specimens of thickness 10 mm,

Crack length Critical load Critical displacement
a (mm) P (kN) u (mm)

30 4 0.4

40 35 0.5

50.5 3.12 0.63

61.6 28 0.78

71.7 2.67 0.94

79 2.56 1.09

where P and u are the critical load and displacement at each crack growth. The load
displacement record for all crack lengths is linear up to a critical point. Determine the
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critical value of the strain energy release rate Ge=R from (a) the load displacement
records and (b) the compliance-crack length curve.

Solution The load-deflection curve can be constructed from the tabulated data, as
shown in Fig.4.4(a). The area for a triangle depicted in Fig.4.4(b) is,

1 1 1
—PRu, —E(Pl - P, )(u, _ul)z'z_(Pl”z - Bu,)

Area = Pu, —%P,u, =3

and so the energy released during each crack growth can be calculated

_ Area 3 (Bu; - Pu)
2Ma-B  2B(a; -a,;)

The results for the five crack increments are: 30.0, 30.7, 30.2, 29.1, 30.8. (The unit is
kJ/m?2). Clearly this material exhibits little R-curve behaviour.

...........................

Load P (kN)

0 0.3 0.6 09 12

Displacement (mm)

Fig.4.4 Load-deflection curve

4.4 Mixed Mode Loading: Fracture and Crack Path

Most structures and components are subjected to more than one loading. When two or
more modes of loading are present, equation (2.20) indicates that energy release rate
contributions from each mode are additive. This equation assumes self-similar crack
growth, however. If we consider an angled crack problem as depicted in Fig.4.5,
coplanar growth means that the crack would grow at an angle 90° — 8 degrees from
the applied stress. In practice, the crack tends to propagate in a direction orthogonal to
the applied normal stress; i.e. the mixed-mode crack becomes a mode I crack. This is
because a propagating crack seeks the path of least resistance (or the path of maximum
driving force, or the path that the maximum amount of energy can be released) and
need not be confined to its initial plane. A number of criteria have been proposed to
account for such effects. Among them, the most widely used are (i) crack growth will
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take place in the direction of maximum energy release rate; (ii) crack growth occurs in
a direction perpendicular to the maximum principal stress; (iii) crack growth occurs
where the strain energy density is the minimum. It can be shown that criteria (i) and
(if) are identical and the differences between these criteria are generally small.

Oy

Fig. 4.5 Through crack in an infinite plate under mixed mode loading

If a crack is loaded in combined mode I and II, the stresses o, and 7, at the crack tip

can be derived from the expressions in Table.2.2, by adding the stresses due to the
separate mode I and mode IL. The result is as follows:

1

O, =
o N2

cos’ (-Zi] [K , cosg- -3K, sin —g—] (4.11)

cos—g—[K s singcos—z—+ K, (1-3sin’ g)] (4.12)

1
T =
ré f 27'[}"

Suppose that the crack in question forms an infinitesimal kink at an angle a from the
plane of crack, as shown in Fig.4.6. The local stress intensity factors at the tip of this
kink differ from the nominal K values of the main crack. If we define a local
x'—y coordinate system at the tip of the kink, we can define the local mode I and

mode II stress intensity factors,

K, ()= lrl_rg o 27 = cos’ %[K, cos% -3K, sin%:I (4.13)

K,(a)=1lm T,o\ 27 = cosg—[K, sin%cos% +K,(1-3sin’ %):I
(4.14)
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Fig.4.6 Kink at the tip of a crack inclined at an angle to the applied load

The energy release rate for the kinked crack is

K} (@)+K3(@) w15

G(a) = -

According to the energy release rate criterion, crack propagation would occur in a
direction along which the above energy release rate attains a maximum value. This is

shown in Fig. 4.7, where the energy release rate G(a) is normalised by G(a =0).

2.0

1.5

G(a)/G(0%)

0.5

0
-200 -100 0 100 200

Kink angles (degrees)

Fig.4.7 Local energy release rate at the tip of a kinked crack

Since
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dK,

3 K, cos’ gsinﬁ——%K,, cosﬁ(l —3sin’ 9—) =_>
2 2 2 2 2

da

the maximum of the strain energy release rate dG(a)/da=0is equivalent to
K, ()=0 or dK, / da =0, thus the peak in G(a) at each ay corresponds to the point

where Ki(a) exhibits a maximum and Ki(ao)=0. In other words, the energy release rate
criterion is identical to maximum hoop stress criterion. Figs.4.8 show the hoop stress
distributions for three mixed mode ratios: K, /K, =0 (mode I), K, /K, =1,

K, /K, = (modell).

1.0
0.8
0.6

Ky/K=0

Ky/KF=©

CRACK

compressive

1.5

2.0

Fig.4.8 Distributions of hoop stress for various mixed mode ratios

S 1.0

tensile

1.5 20

K=Ky
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The arrows in the figures mark the direction of crack propagation, which is given by
the following equation

Ky(a,)=0 (4.16)
S0
K, sinﬂcosﬂ+K”(l—3Sin2 Zoy=0 (4.17)
2 2 2
which yields,
2
K K
(tan—a—") 1A ( ’) i (4.18)
2/,, 4K, 4K, 2

The critical value of Ki or Ki at which crack propagation occurs can be determined
from the following equation,

K, (@)=K, ie K, cos’ % 3K, cos’ %sin % =K, (4.19)

Example 4.13 Determine the propagation angle for an inclined crack subjected to
uniaxial tension.

Solution: Assume the crack is inclined at an angle B to the applied load, as depicted in
Fig.4.5. The mode I and mode II stress intensity factors can be determined as,

K, = o\ ma cos’ and K, =ovma cosf sinf8

consequently the mode I to mode II ratio is equal to (1/tan 3 ), hence the kink angle is
equal to B+ow,

toe= f +2t “( L ( ! )2 1
Bras=/f + ant4tan,8_ 4tanf) " 2

which is depicted in Fig.4.9, together with some experimental data.
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Fig.4.9 Variation of crack extension angle versus the crack inclination angle p.
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5. Fatigue and Life Prediction

5.1 Fatigue Crack Growth Equations

When a constant range of cyclic stress, Ao (= 0, —0;,), is applied to a cracked
structure, stable fatigue crack growth can occur at stress levels well below the yield
stress of the material. In fact, the range of the stress intensity factor AK, where
AK =K, — K, in a cycle may also be well below the materials fracture toughness
Ki. The reason for this is simple: the material near the crack tip is under severe plastic
deformation (see Chapter 3). Since the stress-strain field near a crack tip is uniquely
determined by the stress intensity factor, fatigue crack growth rates can be correlated
to AK and Fig.5.1 shows a typical plot which can be divided into three zones:
threshold, stable crack growth and instability.

fast fracture or
plastic collapse

da/dN=
C(AK)™

Stress intensity factor range

Fig.5.1 A typical fatigue crack growth Curve

In general the crack propagation rate of a given crack subjected to a constant
amplitude loading depends primarily on the range of stresses in the fatigue cycle
(G pax»Omin)» and on the crack length. It is also influenced by the stress ratio

max ?
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R=o,, /0, . Insimple cases where the condition of similitude holds, the stress
intensity factor concept allows account to be taken of the two major terms by means of

the stress intensity factor range,

AK=K, -K,.

max

: (5.1)
The concept of similitude is important for fatigue crack growth, as it provides the basis
for applying fracture mechanics to fatigue crack growth. Similitude implies that the
crack tip conditions are uniquely defined by a single loading parameter such as the
stress intensity factor.

Now let us consider a growing crack under the action of a constant amplitude cyclic
stress intensity. A cyclic plastic zone forms at the tip of the crack, and the growing
crack leaves behind a plastic wake. If the plastic zone is sufficiently small that it is
entirely embedded within an elastic singularity zone (see Examples 2.7 and 3.1), the
conditions at the crack tip are uniquely defined by the current K, and the crack growth
rate is characterised by Kuin and Kua: . If the crack is long and/or the stress is high, then
crack instability and rapid acceleration can occur since Kmax is close to the fracture
toughness of the material Ki.. At lower value of AK the linear portion of the curve in
Fig.5.1 may be expressed as

da m
S = J(AK, R) = C(AK) (5.2)

where C and m are material, environment, stress state (stress ratio R) and temperature
dependent. This equation is sometimes referred to as the Paris law. Equation (5.2),
especially in its integral form, is widely used to evaluate the lifetime of cracked
structures from a knowledge of the material. Usually the value of m for many
engineering materials is between 2 and 4. Finally at very low AK values, a threshold is
reached, AK, , below which long cracks do not grow.

Experimental fatigue crack growth data are usually obtained from tests on simple
specimens and are normally presented in terms of fatigue crack propagation rates
(da/dN), AK and variations in values of R. In cases where o, is compressive the

crack may close during the fatigue cycle and no clear convention for calculating AKX
has been established. Nevertheless, two popular approaches are:

1. the full range of the stress cycle will have been used, when calculating AK
2. only the tensile part of the cycle will have been considered, that is AK =Kmax.

To describe the crack growth rate over the complete range of variation, including
threshold and fracture instability, a number of empirical relationships have been
proposed. One example is the Pridle equation,

da AK —AK,\"
! (AK’R’K“K*’=C(?T"“) ©.9)
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The mechanisms responsible for the threshold phenomenon are rather complicated.
The most popular explanation is crack closure: due to the compressive stress induced
by the plastic wake, the ‘true’ stress intensity factor at the tip of the crack is ‘shielded”
so that no plastic deformation can occur, hence no crack growth. Another possible
explanation is that the crack tip plastic deformation cannot penetrate the
microstructural barriers, such as grain boundaries, etc.

When a structural component is subjected to fatigue loading, a dominant crack reaches
a critical size under the peak load during the last cycle leading to a catastrophic failure.
As an example, consider a plate with a crack of 24 subjected to a uniform stress ¢
perpendicular to the plane of the crack. The total number of cycles for the crack to
reach 24 can be obtained by integrating the fatigue crack propagation law given by
equation (5.2),

“ da
N, = I—C—(TKV (5. 4)

L

Using equation (2.31) we obtain

a
N, = | e (5.5)
PA C{Y(a )Aa\/_n;z_ ]
Assuming that the function Y(a) is equal to its initial value Y({ao) so that
AK = AK, ’i where AK,, = ¥(a,)Ac/ma, . 6)
a
thereafter
1 5 mi2-1
- [_) form 2
m-— a
N,= ] ’ d ©.7)
a
——aL——i n-L form=2
(C(AK,)™ 4,

The critical crack length a¢ at which unstable crack growth occurs can be determined
from fracture toughness (see Chapter 4). Usually, however, the geometry factor Y(a)
varies with the crack length a and the integration of equation (5.5) cannot be
performed directly, but only through the use of numerical methods.

Example 5.14 A large centre-cracked plate containing an initial crack of length 240=10
mm is subjected to a constant amplitude cyclic tensile stress ranging between a
minimum value of 100 MPa and a maximum of 200 MPa. Assuming the fatigue crack
growth rate is governed by the equation
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da
“—~ =042x10""(AK)’* (m/cycle
Y (AKY (m/cycle)

(1) Calculate the crack growth rate when the crack length has the following values
24=10 mm, 30 mm, 50 mm.

(2) Assuming further that the relevant fracture toughness is 60 MPa Jm, estimate the
number of cycles to failure.

Solution

(1) Determine the critical crack size, a.,

2
K

ac=l[—£—) =287x10" (m)

n\o

max
This means the total crack length at fast fracture is 57.3 mm.

(2) Crack growth rates:

2a=10mm AK =Acm =12.53 MPavm

g}% =0.42x10™" x (12.53)’ =826 x10” (m/ cycle)

20¢=30mm AK=Acvm =217 MPavm

—g;— =042x107" x (21.7)° =4.29x10™® (m/ cycle)

2¢=50mm AK =Ac+m =28 MPaJm

g}% =0.42x10™" x (21.7) =9.24 x10™* (m/ cycle)

(3) Fatigue life:

= da 87 da 28.7
Ny = JdN= = =135x10° [a7™?
d ‘[ ;'l 0.42x107M(AK)* ¢ 739x 1010 572 X Ia da

5

28.

=1.35x10°(=2)a™|." =6.76 x 10° (cycles)

5.2 Effect of Stress Ratio and Crack Closure

Let us now consider the crack tip plastic deformation in more detail, as it is the driving
force for crack growth. For a crack under cyclic loading, the plastic size is related to the
stress intensity factor at the maximum load,
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1 K2,
rp= = (ao-ys )z (5.8)

where «a is defined in Chapter 3 and o, refers the material’s uniaxial yield stress.

When the applied load is reversed, the local stress at the tip of the crack is also
reversed, inducing reversed yielding. At the minimum load, the size of the reversed
plastic zone is, according to superposition principle,

G

~ (2ao )’ ©-9)

pc

It is clear that for a asymmetrical loading (R#-1), AK#2K ,, the maximum
(sometimes called monotonic or forward) plastic zone.is not equal to the reversed
plastic zone, which is normally smaller than the forward plastic zone. The main reason
for this smaller plastic zone is due to the residual stress induced by the maximum load.
A graphical representation is shown in Fig. 5.2.

max /

When the crack growth rates observed under different applied stress ratio R are
compared, it is noted that fatigue crack growth rate exhibits a dependence on the R
ratio, particularly at both extremes of the crack growth curve. While the R ratio effect
on the upper end of the curve can be explained in terms of the interaction between
fatigue and ultimate failure at or near Kc, the explanation for the effect near threshold
is slightly more complicated.

> s

at overload o

' ys +  after overload

5

Fig.5.2 Reverse yielding at crack tip under cyclic loading

It was first reported by Elber (1971) that the elastic compliance of several fatigue
specimens showed a bi-linear relationship, as depicted in Fig. 5.3. At high loads, the
compliance of the fatigue specimen agreed with standard formulas for cracked
specimens derived from fracture mechanics assuming monotonic loading. But at low
loads, the compliance was close to that of an uncracked specimen. It was believed that
this change in compliance was due to the contact between crack surfaces (crack
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closure) at loads that were greater than zero. This surprising finding that fatigue cracks
close at above zero load led to the postulation that the crack closure decreased the
effectiveness of the applied stress intensity factor range. Crack faces (near crack tip) are
in contact below Kop, hence the stress intensity factor range over which the crack is
open is equal to K, —K,,, which is defined as the “effective stress intensity factor

range’, denoted as AK ;. The main factor contributing to crack closure is the plasticity

wake induced behind the crack tip. As the crack grows, plastically deformed materials
remains in the region through which the crack has propagated. When the component
is unloaded, the large mass of elastically loaded material compresses the small plastic
region and causes regions of the crack surface to come into contact with one another
before zero nominal stress is reached.

uncracked stiffness

T
BK

stiffness of fatigue
cracked specimen

>
L4 Ld

Time

Displacement

(a) Load-displacement behaviour (b) definition of effective stress intensity factor

Fig.5.3 Crack closure during fatigue crack growth

This concept of crack closure may be used to explain the effect of mean stress on crack
propagation rates and leads to the definition of an effective stress intensity factor range
AK ;. At higher values of R, less crack closure tends to occur and AK,, approaches

AK because K, approaches K, ;. Now the fatigue crack growth equations (5.2)
should be modified accordingly by replacing AK with AK ;.
da _

=Tk, (5. 10)

The ratio between the effective and applied stress intensity factors is normally denoted
as U,

off
5.11
AK ( )

U=

For instance, the effective stress ratio U for 2023-T3 aluminium at various stress ratios
was reported to be independent of load levels and can be expressed as

U=05+04R (-01<R<07) (5.12)
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Although some researchers have argued and experimentally demonstrated that U also
depends on Kmax, it seems that there is a great deal of confusion and controversy about
the Kmax dependence of U. Nevertheless, the concept of crack closure has been widely
acknowledged and demonstrated to be useful in interpreting fatigue crack growth
under variable amplitude loading.

5.3 Variable Amplitude Loading

As discussed earlier, fatigue life prediction for constant amplitude loading is
reasonably straightforward, provided the fatigue crack growth constants are known.
However, the majority of engineering structures are subjected to fluctuating loading,
and the life prediction is generally much more complicated than that outlined in the
previous section. The factors that affect crack growth include variable amplitude
spectrum, crack retardation due to overload, and acceleration due to underload. A
number of theories and engineering methods have been proposed to reflect these
effects.

Strictly speaking, for a fracture mechanics approach to be valid for fatigue crack
growth under spectrum loading, the similitude condition has to be satisfied. For a
crack growing in a rising or falling K field, similitude may be approximately satisfied if
dK/da is small. In the case of overload, due to change in crack tip plastic deformation,
similitude does not strictly hold. Simple fatigue crack growth laws that assume
similitude are usually conservative when applied to variable amplitude loading. For
example, a loading history can be cycle counted to identify reversals, using the
rainflow or range pair method, then a linear summation of the fatigue lives of the
various constant amplitude loads in the loading history would provide a first order
approximation. However, such a method generally leads to conservative predictions
(shorter lifetime), as it ignores the crack retardation effect to be described below.

It was first recognised empirically in the early 1960s that the application of a tensile
overload in a constant amplitude cyclic load leads to temporary slower crack growth
rate following the overload. Such a phenomenon is called crack retardation. In other
words, the crack growth rate becomes smaller than it would have been under constant
amplitude loading of the same magnitude. It was also recognised that a tensile-
compressive overload following a constant amplitude cyclic load has little crack
retardation effect. In fact, a compressive overload alone would accelerate crack growth.
The effect of crack retardation can be better appreciated if we consider the elastic-
plastic deformation ahead of a growing crack. Upon the application of a tensile
overload, a large plastic zone is induced at the crack tip. After the removal of the
overload, the elastic material surrounding the plastic zone acts like a clamp on this
zone causing compressive residual stresses. As the crack propagates into the plastic
zone, the residual compressive stresses tend to close the crack, leading to a decreasing
growth rate as the crack advances into the compressive residual stress field. The effect
of retardation will gradually diminish as the crack grows out of this residual stress
field. It is easy to envisage that the opposite will occur for an compressive overload:
the residual stress will be tensile, leading to faster crack growth.
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The development in fatigue crack growth prediction can be roughly divided into three
stages chronologically.

1.

The first generation of crack growth analysis was based on linear assumption of
constant amplitude data for da/dN versus AK, viz the Palmgren-Miner linear
rule, which results directly from the integration of crack growth law (see next
section). As the effect of loading sequence is totally ignored in this approach, the
accuracy of the resulting prediction is generally poor.

From experimental results, a number of interactions between different load cycles
of different magnitude have been observed, most notably retardation after
overload and crack growth acceleration after underload. Based on these
experimental findings, several plastic yield zone models, so called second
generation, were proposed. The most widely used is the Wheeler model, which
needs to be experimentally calibrated for a given spectrum. The main
disadvantage of this type of the model is the sensitivity to loading spectrum thus
rendering it impossible to be used for ‘blind” predictions.

The third generation crack growth models, commonly called strip yield model,
emerged after the discovery of crack closure by Elber (1971). When plotted against
the effective stress intensity factor, which is the difference between the maximum
stress intensity factor and the stress intensity factor below which crack remains
closed, the effects of loading sequence and stress ratio would virtually disappear.
Based on this simple fact, several models have been developed to calculate the
effective stress intensity factor. For example Newman (1992; 1995). The crack
opening stress level is analytically calculated using the Dugdale-Barenblatt strip
yield model. After the crack has advanced a distance, a plastic wake is left behind,
which in general exerts a resistance to crack closing during the downward half
cycle, thus reducing the effective stress intensity which dictates crack growth rate.
This plastic wake can also be (partially) destroyed if a high underload is applied,
resulting in a temporary acceleration of crack growth. The essence of this method
is to analytically determine the stress level required to counter act the resistance
exerted by the residual plastic deformation (or the stress level above which the
crack remains open), and the crack growth rate is given by the effective stress
intensity factor,

da/dN = CAK™ = C(K . — K,,)" = COA1=S, / Spy) | (1= R)]" AK™

where constants C and m are experimentally determined from experiments.
Parameter S is the applied stress, and R is the stress ratio (S, / S, ). Clearly the
only unknown in the above equation is the crack opening stress level S . This
approach has been successfully used to correlate and predict large-crack growth
rate behaviour under a wide variety of loading conditions. This is possible because
the crack tip plastic deformation process that drives the crack is uniquely
determined by the stress intensity factor. However, when the crack is small, the
plastic strain distribution ahead the crack tip is no longer solely controlled by the
stress intensity induced by the crack, but also depends on the macro-stress/strain
state, which is geometry and loading dependent.

The first two methods are relatively easy to apply, while the strip yield models were
more numerically involved, although this type of analysis was reported to give better
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correlations to fatigue crack growth under spectrum loading. In the following, some
detailed discussion of these methods is presented.

5.3.1 First Generation Model and Palmgren-Miner Linear Rule

It is easy to demonstrate the Palmgren-Miner linear damage summation rule is a direct
result of crack growth rate being proportional to crack length (m=2 in the Paris law).
Let an initial stress range Ao, be changed to a different stress range Ao, when the

crack has grown from a, to a, after N, cycles. At the second stress range the crack
grows to a, to cause failure after N, cycles.

At the first stress range, from equation (5.7),

1 a
=————I-L (5.13)
" (Ao a
=l pa (5. 14)
C(Ao,)'m  a,
hence
N, _ In(a, / a,) (5.15)
N, In(a,/a,)
For the second stress range level
N &
hC(ae,)r a
1 a
=———Ih—+ 5.16
' C(Acy)’m a, ©-16)
hence
N, _ In(a, /a,) 6.17)
N, In(a,/a,) '
hence
Z—]&—E—]—V—l—-i- N, _ ln(al/ao)+ln(af/al)=1 5.18)
N, N, N, In(a, /a,)

=3

Similarly one can prove that
crack growth relationship,

e same conclusion can be obtained for a more general
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Y _ gpc'a (5.19)
dN

This is left as an exercise for the reader. Therefore the Palmgren-Miner linear
summation rule assumes inexplicitly that (1) the crack growth rate is proportional to
crack length and (2) the proportionality is solely dependent on the instantaneous stress
level and independent of loading history. As will be seen later that assumption (2) is
generally not true, owing to the crack closure effect, which is history dependent.

5.3.2 Wheeler Model

If there had been no overload, the crack would have progressed with a plastic zone of
size equal to

2
K
Vo = 1 (——@"—] (5. 20)

m\ao,

where o = 1 for plane stress and o = /3 for finite thickness, and Kmax is the amplitude
of applied stress intensity factor. At the moment of the overload the plastic zone size

is
1 2
T =—( 2 ] (5.21)

() Aa

B overload

plastic
zone

Fig.5.4 The Wheeler model for crack retardation

Wheeler assumed that retardation effect persists as long as r,, is contained within r,,,

see Fig.5.4, but the overload effects disappear when the current plastic zone touches
the outer boundary of r,,. At any instant, the distance between the crack tip and the

outer boundary of r,, is equal to Aa +r,,, we can define two parameters
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A = ~ or A, = Ll 5.22
= T 6.2

which are plotted in Fig.5.5. A retardation factor can now be defined as
$=A (. 23)

where 7 is a fitting parameter. The crack growth rate is reduced from the baseline value
by ¢:

An important point about the Wheeler model is that the exponent y depends on
material properties and loading spectrum. Therefore this parameter must be obtained
empirically from an experiment with a stress spectrum that has a similar
characteristics of that to be analysed. A variable amplitude loading analysis must be
performed to determine the y value that gives the best correlation of crack growth. The
model can then be applied to structural predictions for components subjected to the
same spectrum but of different magnitude. A re-calibration of the Wheeler model with
new experiments must be carried out if the structure is subjected to a different stress
spectrum. The linear summation method can be considered as a special case of
Wheeler’'s model by setting y = 0.

Aalr
po

Fig.5.5 Choices of retardation parameter
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5.4 Damage Tolerance Design Methodology

The term damage tolerance has a variety of meanings, but normally refers to a design
methodology in which fracture mechanics analysis is used to predict crack growth life
and quantify inspection intervals. This approach is usually applied to structures that
are susceptible to time-dependent flaw growth. The two objectives of damage
tolerance analysis are to determine (1) the effect of cracks on the (residual) strength
and (2) crack growth behaviour as a function of time. Damage tolerance analysis
consists of several steps. A brief outline of the steps involved in damage tolerance
calculations is given below. Assuming the service loading spectrum and material
properties (fracture toughness and fatigue crack growth rate constants) are known:

1. Determine the size of initial defects, e.g. NDI inspection.
2. Calculate the critical crack size at which failure would occur (see Chapter 4)

3. Integrate fatigue propagation equations to determine the number of load cycles (or
blocks) for the crack to grow from its initial size to its critical size (see section 5.1)

4. Setinspection interval to half the life calculated in step 3.

A comparison between “safe-life” and “damage tolerance” design methodologies is
given below.

Safe-life Damage tolerance
structure is assumed to be defect initial defect is assumed to exist:
free equal to NDI limit
no crack formation at design service inspection to detect crack
life
design life < service life with or crack is assumed to grow to critical
without repair length in two inspection intervals
life at 1.2 design loads equal to 1.5
design life
safe life derived from 5-N curves crack growth determined from
(local strain approach) fracture mechanics
scatter factor of 3-4 applied to scatter factor = 2 in fatigue crack
calculated lives growth
failure probability = 0.001 failure probability after 2 inspections

= 0.001
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